Resources > Articles

Data Analytics vs. Data Mining: What’s the Difference?

Author
  • Pragmatic Institute

    Pragmatic Institute is the transformational partner for today’s businesses, providing immediate impact through actionable and practical training for product, design and data teams. Our courses are taught by industry experts with decades of hands-on experience, and include a complete ecosystem of training, resources and community. This focus on dynamic instruction and continued learning has delivered impactful education to over 200,000 alumni worldwide over the last 30 years.

Data Scientist Presenting Insights to Team

Data analytics and data mining are often used interchangeably, but there is a big difference between the two.  

Data analytics is the process of interpreting data to find trends and patterns. 

On the other hand, data mining is the process of extracting valuable information from a large dataset. 

This blog post will explore the differences between these two important data science concepts.

 

Key Differences

Data analytics is a broad field that encompasses several different approaches to working with data. The three most common approaches to data analytics are: 

  • Descriptive 
  • Predictive
  • Prescriptive analytics 

Descriptive analytics focuses on understanding what has happened in the past. This approach is typically used to generate reports or build dashboards that help decision-makers understand what is happening within the organization. 

Predictive analytics uses historical data to build models that can be used to make predictions about future events. This approach is often used in marketing to identify potential customers or in human resources to predict employee attrition. 

Prescriptive analytics takes things one step further by not only making predictions about what will happen in the future, but also recommending actions that should be taken to achieve desired outcomes. For example, a prescriptive model might identify a problem before it happens and then recommend a course of action that should be taken to prevent it from occurring. 

In contrast, data mining is a specific type of data analysis focusing on finding hidden patterns and relationships in data sets. This approach is often used for fraud detection or marketing purposes (e.g., finding groups of customers with similar characteristics). 

 

Data Analytics

Data analytics is all about interpretation. 

To be good at data analytics, you need to be able to look at a dataset and see beyond the raw numbers. You need to be able to find trends and patterns in the data that can be used to make predictions or recommendations. 

For example, let’s say you’re analyzing sales data for your company’s latest product launch. Through your analysis, you might discover that certain demographics are more likely to purchase the product than others. This information can then be used to target future marketing efforts to those demographics. 

 

Data Mining

Data mining is all about extraction. To be good at data mining, you need to be able to take a large data set and distill it down to its most essential elements. This requires both an understanding of statistics and computer programming. 

For example, let’s say you have a dataset containing customer purchase history from your company’s online store. A data miner would be able to take that dataset and extract valuable information like which products are most popular with certain demographics or which products are frequently purchased together. This information can then be used to make decisions about inventory levels, product pricing or even which new products to develop. 

 

Conclusion 

Both data analytics and data mining are important skills for any data scientist to master. When deciding which approach to use, it’s important to consider the specific problem you’re trying to solve and the type of data you have available. Data analytics helps you understand what the data means, while data mining helps you extract valuable information from it. 

The best way to become proficient in both skills is to practice working with different datasets. There are many online resources that provide free datasets for anyone to use. For a more targeted approach, check out our practical, in-depth courses

At Pragmatic Data, we believe strengthening data and business fluency across an organization is key to delivering value to your bottom line. Our courses help build expertise within data teams and improve stakeholder collaboration. 

So what are you waiting for? Get out there and start practicing!

 

Deliver Critical Insights that Power Business Strategy

Business-Driven Data Analysis is designed to help you translate a business problem into data analysis that provides actionable insights and ensures alignment with diverse stakeholders. Figure out what a stakeholder truly wants, refine the project based on available data, produce concrete results, and provide strategic insights. 

Learn More

 

Author
  • Pragmatic Institute

    Pragmatic Institute is the transformational partner for today’s businesses, providing immediate impact through actionable and practical training for product, design and data teams. Our courses are taught by industry experts with decades of hands-on experience, and include a complete ecosystem of training, resources and community. This focus on dynamic instruction and continued learning has delivered impactful education to over 200,000 alumni worldwide over the last 30 years.

Author:

Other Resources in this Series

Most Recent

The Ultimate Guide to Explaining Your Data Findings
Article

The Ultimate Guide to Explaining Your Data Findings

Without context or explanation, data is little more than numbers and statistics on a computer screen, right? Or, if you’re really retro, figures on a paper spreadsheet! As a data practitioner, you need to describe...
Category: Data Science
Article

10 Ways to Communicate Data Findings Effectively

There’s a popular joke in data circles that you might have already heard: Data practitioners spend 80% of their time preparing data and 20% complaining about preparing data. The truth is, there’s much more to...
Category: Data Science
How to Communicate Data Insights to Business Stakeholders
Article

Comprehensive Guide: How to Communicate Data Insights to Business Stakeholders

Data analysis is about more than crunching numbers. You need communication skills as sharp as your technical abilities to drive real impact. When you’re presenting findings to stakeholders, making complex insights clear and credible is...
Category: Data Science
Flying the Profitable Skies: A Sneak Peek at How Airline Loyalty Programs Really Work
Article

Flying the Profitable Skies: A Sneak Peek at How Airline Loyalty Programs Really Work

“The data is there; it’s about making it actionable.” – Mark Ross-Smith  Have you ever wondered how you could help airlines extract more value from their loyalty programs? Or questioned how they rake in billions...
Category: Data Science
Article

Harmonizing Data and Storytelling: Miriam Quick's Creative Approach to Data and Visualizations

In a world overflowing with data, Miriam Quick believes it is crucial to interpret this information in ways that are meaningful and accessible. Quick is helping to democratize data through data and visualizations.
Category: Data Science

OTHER ArticleS

The Ultimate Guide to Explaining Your Data Findings
Article

The Ultimate Guide to Explaining Your Data Findings

Without context or explanation, data is little more than numbers and statistics on a computer screen, right? Or, if you’re really retro, figures on a paper spreadsheet! As a data practitioner, you need to describe...
Category: Data Science
Article

10 Ways to Communicate Data Findings Effectively

There’s a popular joke in data circles that you might have already heard: Data practitioners spend 80% of their time preparing data and 20% complaining about preparing data. The truth is, there’s much more to...
Category: Data Science

Sign up to stay up to date on the latest industry best practices.

Sign up to received invites to upcoming webinars, updates on our recent podcast episodes and the latest on industry best practices.

Subscribe

Subscribe

Training on Your Schedule

Fill out the form today and our sales team will help you schedule your private Pragmatic training today.