# Pandas Reference Sheet



#### Loading/exporting a data set

path\_to\_file: string indicating the path to the file, e.g., 'data/results.csv'

- df = pd.read\_csv(path\_to\_file)-read a CSV file
- df = pd.read\_excel(path\_to\_file) read an Excel file
- df = pd.read\_html(path\_to\_file) parses HTML to find
   all tables

df.to\_csv(path\_to\_file) - creates CSV of the data frame

#### **Examining the data**

df.head(n)-returns first n rows

- df.tail(n) returns last n rows
- df.describe() returns summary statistics for each numerical column

df.columns-returns column names

df. shape-returns the number of rows and columns

## **Selecting and filtering**

#### SELECTING COLUMNS

df [ 'State' ] -selects 'State' column

#### SELECTING BY LABEL

df.loc['a']-selects row by index label

#### SELECTING BY POSITION

- df.iloc[0] selects rows in position 0

#### FILTERING

- df[df['Population'] > 20000000]]-filter out rows not meeting the condition
- df.query("Population > 20000000")-filter out rows
   not meeting the condition

|   | State      | Capital | Population |  |  |
|---|------------|---------|------------|--|--|
| а | Texas      | Austin  | 28700000   |  |  |
| b | New York   | Albany  | 19540000   |  |  |
| с | Washington | Olympia | 7536000    |  |  |

# **Statistical operations**

can be applied to both data frames and series/column

| <pre>df['Population'].sum()—sum of all values of a column</pre>                |
|--------------------------------------------------------------------------------|
| df.sum()—sum for all numerical columns                                         |
| df.mean()-mean                                                                 |
| df.std()-standard deviation                                                    |
| df.min() — minimum value                                                       |
| df.count() -count of values, excludes missing values                           |
| df.max()—maximum value                                                         |
| <pre>df['Population'].apply(func)-apply func to each     value of column</pre> |
|                                                                                |

#### **Data cleaning and modifications**

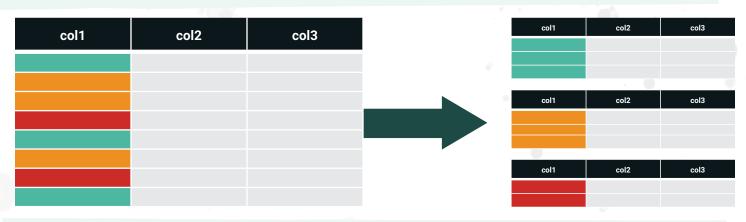
- df['State'].isnull() returns True/False for rows with
   missing values
- df.dropna(axis=0)-drop rows containing missing values
- df.dropna(axis=1)-drop columns containing missing
  values
- df.fillna(0)-fill in missing values, here filled with 0
- df.sort\_values('Population', ascending=True)
   -sort rows by a column's values
- df.reset\_index() makes the current index a column

Example data frame



# **Grouping and aggregation**

grouped = df.groupby(by='col1')-create grouped by object grouped['col2'].mean()-mean value of 'col2' for each group grouped.agg({'col2': np.mean, 'col3': [np.mean, np.std]})-apply different functions to different columns grouped.apply(func)-apply func to each group



# **Merging data frames**

There are several ways to merge two data frames, depending on the value of method. The resulting indices are integers starting with zero.

# df1.merge(df2, how=method, on='State')

|                                          | State      | Сар      | ital        | Population     |                       |           | S          | State         | Highest    | Point         |
|------------------------------------------|------------|----------|-------------|----------------|-----------------------|-----------|------------|---------------|------------|---------------|
| а                                        | Texas      | Aust     | in          | 28700000       |                       | x         | W          | ashington     | Mount Ra   | ainier        |
| b                                        | New York   | Alba     | ny          | 19540000       |                       | у         | Ne         | ew York       | Mount M    | arcy          |
| c Washington Olympia 753                 |            | 7536000  |             | z              | Nebraska Panorama Poi |           | a Point    |               |            |               |
| Data frame df1   Data frame df2          |            |          |             |                |                       |           |            |               |            |               |
| State                                    | Сар        | ital Pop | ulation     | Highest Point  |                       | State     |            | Capital       | Population | Highest Point |
| Texas                                    | Aus        | in 287   | 00000       | NaN            | 0                     | New York  |            | Albany        | 19540000   | Mount Marcy   |
| New Yo                                   | ork Alba   | iny 195  | 40000       | Mount Marcy    | 1                     | Washingto | on         | Olympia       | 7536000    | Mount Rainier |
| Washington Olympia 7536000 Mount Rainier |            |          | how='inner' |                |                       |           |            |               |            |               |
| how='left'                               |            |          |             | State          |                       | Capital   | Population | Highest Point |            |               |
| State                                    | Сарі       | tal Pop  | ulation     | Highest Point  | 0                     | Texas     |            | Austin        | 28700000   | NaN           |
| New Yo                                   | ork Alba   | ny 195   | 40000       | Mount Marcy    | 1                     | New York  | ••••       | Albany        | 19540000   | Mount Marcy   |
| Washin                                   | igton Olym | pia 753  | 6000        | Mount Rainier  | 2                     | Washingto | on         | Olympia       | 7536000    | Mount Rainier |
| Nebras                                   | ka NaN     | NaN      | 1           | Panorama Point | 3                     | Nebraska  | ••••       | NaN           | NaN        | Panorama Poi  |
| how='right' how='outer'                  |            |          |             |                |                       |           |            |               |            |               |

Register or learn more about other courses in our data curriculum by visiting pragmaticinstitute.com/data-science or calling 480.515.1411.

# learn Reference Sheet



# The data

Your data needs to be contained in a two-dimensional feature matrix and, in the case of supervised learning, a one-dimensional label vector. The data has to be numeric (NumPy array, SciPy sparse matrix, pandas DataFrame).

# Transformers: preprocessing the data

#### EXAMPLE

ex\_transf = ExampleTransformer()-creates a new instance ex\_transf.fit(X\_train)-fits transformer on training data transf\_X = ex\_transf.transform(X\_train)-transforms training data transf\_X\_test = ex\_transf.transform(X\_test)-transforms test data

STANDARDIZE FEATURES (ZERO MEAN, UNIT VARIANCE)

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

#### SCALE EACH FEATURE BY ITS MAX ABS VALUE

from sklearn.preprocessing import MaxAbsScaler
max\_scaler = MaxAbsScaler()

#### GENERATE POLYNOMIAL FEATURES

from sklearn.preprocessing import PolynomialFeatures
poly\_transform = PolynomialFeatures(degree=n)

#### ONE-HOT ENCODE CATEGORICAL FEATURES

from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()

#### PRINCIPAL COMPONENT ANALYSIS

from sklearn.decomposition import PCA
pca = PCA(n\_components=n)

# Splitting into training data and test data

from sklearn.model\_selection import train\_test\_split
X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y)

# **Predictors: supervised learning**

#### EXAMPLE

ex\_predictor = ExamplePredictor() - creates a new instance

- ex\_predictor.fit(X\_train, y\_train)-fits model on training data
- y\_pred = ex\_predictor.predict(X\_train)-predicts on training data

#### LINEAR REGRESSION

```
from sklearn.linear_model import LinearRegression
```

```
lr = LinearRegression()
```

DECISION TREE REGRESSION MODEL

```
from sklearn.tree import DecisionTreeRegressor
```

```
tree = DecisionTreeRegressor(max_depth=n)
```

RANDOM FOREST REGRESSION MODEL
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()

#### LOGISTIC REGRESSION

```
from sklearn.linear_model import LogisticRegression
logr = LogisticRegression()
```

RANDOM FOREST CLASSIFICATION MODEL
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()

# **Predictors: unsupervised learning**

#### EXAMPLE

ex\_predictor = ExamplePredictor()-creates a new instance ex\_predictor.fit(X\_train)-fits model on training data y\_pred = ex\_predictor.predict(X\_train)-predicts on training data

#### K-MEANS CLUSTERING

from sklearn.cluster import KMeans
km = KMeans(n\_clusters=n)

# **Evaluating model performance**

from sklearn import metrics

**REGRESSION METRICS** 

metrics.mean\_absolute\_error(y\_true, y\_pred)-Mean absolute error metrics.mean\_squared\_error(y\_true, y\_pred)-Mean squared error metrics.r2\_score(y\_true, y\_pred)-R<sup>2</sup> score

#### CLASSIFICATION METRICS

metrics.accuracy\_score(y\_true, y\_pred)-Accuracy score

metrics.precision\_score(y\_true, y\_pred)-Precision score

metrics.recall\_score(y\_true, y\_pred)-Recall score

metrics.classification\_report(y\_true, y\_pred)-Classification report

metrics.roc\_auc\_score(y\_true, y\_pred\_probs)-ROC AUC score

metrics.log\_loss(y\_true, y\_pred\_probs)-Cross-entropy loss

#### CLUSTERING METRICS

metrics.silhouette\_score(X\_train, y\_pred)-Silhouette score

#### CROSS-VALIDATION

from sklearn.model\_selection import cross\_val\_score
cross\_val\_score(lr, X\_train, y\_train, cv=5)

# **Pipeline**

#### EXAMPLE



pipe.fit(X\_train, y\_train)-fits model on training data
y\_pred = pipe.predict(X\_train)-predicts on training data
y\_pred\_test = pipe.predict(X\_test)-predicts on test data

scaler = pipe.named\_steps['feature scaling']
lr = pipe.named\_steps['linear regression']

## Feature union

#### EXAMPLE

from sklearn.pipeline import FeatureUnion

union.fit(X\_train) - fits on training data

X\_transf = union.transform(X\_train) - transforms training data

# Transforming only some features/columns

#### EXAMPLE

```
from sklearn.compose import ColumnTransformer
example_transf = ColumnTransformer(
   [(transformer_name, transformer, columns_to_transform)])
```

example\_transf.fit(X\_train)

```
X_transf = example_transf.transform(X_train)
```

# **Optimizing hyperparameters**

from sklearn.grid\_search import GridSearchCV

grid = GridSearchCV(estimator=DecisionTreeRegressor(), param\_grid={'max\_depth': range(3, 10)})

grid.fit(X\_train, y\_train)

print(grid.best\_estimator\_) - estimator that was chosen by the search

print(grid.best\_params\_) - parameters that gave the best results



# Python Syntax reference sheet



#### WERED BY THE SCIENTISTS AT THE DATA INCUBATOR

# SYNTAX ...

# **Creating variables**

Variables can be created by: deg\_C = 10.5 # This is a variable

A variable name can consist of letters, numbers and the underscore character (\_) but the variable name may not start with a number. Comments are created with a # and are ignored by the Python interpreter.

## **Common mathematical operations**

- 2 + 3 addition
- 1 4 subtraction
- 2 \* 3 multiplication
- 4 / 3 division
- 4 // 3 floor division (round down)
- 2 \*\* 3 raise to the power
- **a** += **1** compute **a** + **1** and assign the result to a
- **a** -= **1** compute **a 1** and assign the result to a

# **Common built-in functions**

- len(temp\_data) returns the number of values of the
   iterable
- sum(temp\_data) returns sum of the values of the
  iterable
- min(temp\_data) returns the minimum value of the
   iterable
- max(temp\_data) returns the maximum value of the
   iterable
- sorted(temp\_data) returns a list of the sorted
  values of temp\_data
- range(start, end, step) returns an iterable from start to end (exclusive) using a step size of step (defaults to 1)

## **Functions**

*......* 

Functions are a great way to group related lines of code into a single unit that can be called upon. Here, we define a function with two positional arguments a and b and one keyword argument **multiplier** with a default value of 1.

```
def subtract(a, b, multiplier=1):
```

Subtract two numbers and scale the result.
"""
diff = multiplier \* (a - b)

return diff

Now, we call the function.
In [1]: subtract(1, 2, multiplier=2)
Out [1]: -2

# **Boolean logic**

These operations will return either **True** or **False**, depending on the value of the two variables. They are often used in conjunction with **if/elif** statements.

- a < b is a less than b
- a > b is a greater than b
- a <= b is a less than or equal to to b
- **a** >= **b** is **a** greater than or equal to **b**
- **a** == **b** do **a** and **b** have the same value
- **a** != **b** do **a** and **b** not have the same value
- **a** is **b** is **a** the same object as **b**

# HILL CERTIFICATION

# Loops

Loops are a way to repeatedly execute a block of code. There are two types of loops: for and while loops. For loops are used to loop through every value of an iterable, like a list or tuple. While loops are used to continually execute a block of code while a provided condition is still true.

# for temp in temp\_data: print(temp)

# count = 0 while count < 10: print(count) count += 1</pre>

# if/elif/else blocks

**if/elif/else** blocks let us control the behavior of our program based on conditions. For example, what value to assign to a variable based on the value of another variable. At a minimum, you need one condition to test, using **if**. Multiple conditions can be tested using multiple **elif** statements. The code in the **else** block, which is optional, is run when none of the tested conditions are met.

if amount < 5: rate = 0.1 elif amount <= 5 and amount < 10: rate = 0.2 else: rate = 0.25

# DATA STRUCTURES

# Strings

Strings are a sequence of characters and are great when wanting to represent text. They're created using either single or double quotes. They can be indexed but strings are immutable. Strings are iterables, iterating over each of the characters.

sentence = 'The quick brown fox jumped over the lazy dog.'

Common operations with strings and usage:

- sentence.lower() returns new string with all characters in lowercase
- sentence.upper() returns a new string with all characters in uppercase
- sentence.startswith('The') returns True or False if string starts with 'The'
- sentence.endswith('?') returns True or False if
  string ends with '?'
- sentence.split() returns a list resulting from splitting the string by a provided separator, defaults to splitting by whitespace if no argument is passed.
- sentence.strip() returns a new string with leading
  and trailing whitespace removed
- 'fox' in sentence returns True if 'fox' is present in sentence.

**'taco ' + 'cat'** - returns a new string from concatenating the two strings

- f"My name is {name} and I'm {age} years
   old." returns a string with the values of variables
   name and age substituted into {name} and {age},
   respectively.
- sentence.replace("brown", "red") replace
   every occurrence of "brown" with "red"
- **Len (sentence)** returns the number of characters of the string

# Lists

Lists are an ordered collection of Python objects. The items of the lists do not have to be the same data type. For example, you can store strings and integers inside the same list. Lists are mutable; they can be altered after their creation. Since they are ordered, they can be indexed by position. Note, Python uses zero indexing so the "first" element is index by 0. Lists are created using square brackets [].

#### temp\_data = [10.5, 12.2, 5, 8.7, 1]

Common operations on lists and example usage:

temp\_data.append(2.5) - adds 2.5 to the end of the
 list

to sort by descending order.

temp\_data.remove(12.2) - removes the first occurrence of 12.2 from the list

temp\_data.pop() - remove and returns the last element of the list

temp\_data[0] - access value at position 0

- temp\_data[:3] access the first three values, positions
   0 to 3 (inclusive-exclusive)
- temp\_data[-1] access the the last element
- temp\_data[1:4:2] access values from position 1
   (inclusive) and 4 (exclusive) with a step size of 2
- **len (temp\_data)** returns the number of values in the list

max(temp\_data) - returns the maximum value of the
 list

- 2 -

sum(temp\_data) - returns sum of the values of the list

**min(temp\_data)** - returns the minimum value of the list



# **Tuples**

Tuples are similar to lists but they are immutable; they cannot be modified. As with lists, they can be indexed in a similar fashion. Tuples are created by using parentheses ().

 $array_shape = (100, 20)$ 

## Sets

Sets are a collection of unique values. They're a great data structure to use when wanting to keep track of only unique values. The members of a set need to be immutable. For example, lists are not allowed but tuples are. A set can be created by passing an iterable to set or directly using curly braces.

even\_numbers = set([x for x in range(100)
 if x % 2 == 0])
squares = { 1, 1, 2, 4, 2, 9, 16, 25, 36,
 49, 64, 81, 100}

- even\_numbers.add(100) add 100 to the set even\_ numbers
- even\_numbers.difference(squares) returns a
   set that is the difference between even\_numbers
   and squares
- even\_numbers.union({1, 3, 5, 7, 9}) return a
   set that is the union of the two sets
- squares.intersection(even\_numbers) return set
   of common elements
- 1 in even\_numbers returns True or False if 1 is a member of the set even\_numbers

# **Dictionary**

Dictionaries store data in key-value pairs. Values can be indexed using the key associated with the value. There's no restriction in what can be values but keys are restricted to immutable types. For example, strings, numerics and tuples can be keys. Dictionaries are created using curly braces {} with the key and value pair separated by a colon :. Iterating over a dictionary yields the keys.

customer\_data = {

```
'name': 'Clarissa',
'account_id': 100045,
'account_balance': 4515.76,
'open_account': True
```

}

- customer\_data['name'] access value associated
   with 'name'
- customer\_data['telephone'] = None create new
   key-value pair 'telephone': None
- customer\_data['telephone'] = '555-1234' update value of key 'telephone'
- del customer\_data['telephone'] delete keyvalue for 'telephone'
- 'age' in customer\_data returns True/False if key
  'age' is in the dictionary
- customer\_data.get('age', −1) returns the value
   of key 'age' if it exists, returns None otherwise.
   Optional second argument is returned instead of
   None if key does not exist.
- customer\_data.keys() returns an iterable over all keys
- customer\_data.items() returns an iterable over all
   key-value pairs
- customer\_data.values() returns an iterable over all values

-3- •

# SQL REFERENCE SHEET POWERED BY THE SCIENTISTS AT THE DATA INCUBATOR



# **Query structure**

SELECT <expressions> FROM <tables> WHERE <conditions> GROUP BY <columns> HAVING <conditions> ORDER BY <columns> LIMIT <number>

Only SELECT and FROM are mandatory

LIMIT restricts the number of rows returned

## SELECT chooses what to get

SELECT customer\_id, items\*price AS total
FROM transactions;

can select columns or expressions, such as product, ratios, etc.

Rename cols or expressions with AS

Get number of rows in table customers: SELECT COUNT(\*) FROM customers;

Get distinct elements in column state: SELECT DISTINCT state FROM customers;

Number of distinct elements: SELECT COUNT(DISTINCT state) FROM customers;

# CASE allows if-like behavior

SELECT customer\_id, CASE WHEN items < 10 THEN 'few' WHEN items > 10 AND items < 100 THEN 'many' ELSE 'lots';

# **Sample tables**

transactions

| customer_id | items | price |
|-------------|-------|-------|
| 27          | 5     | 12.00 |
| 33          | 25    | 11.00 |
| 60          | 150   | 9.00  |
| 60          | 250   | 9.00  |

customers

| id | customer | state |
|----|----------|-------|
| 44 | Amy      | CA    |
| 60 | Brian    | CA    |
| 27 | Pat      | NY    |
| 51 | Alex     | NULL  |

# WHERE filters results

SELECT \*
FROM customers
WHERE state = 'CA';

Select from a list: WHERE customer IN ('Amy', 'Pat');

A pattern, % can be filled in with anything: WHERE customer LIKE 'A%';

Find missing values: WHERE state IS NULL;

Combine filters: WHERE customer\_id < 50 AND state = 'CA';

WHERE name = 'Amy' OR NOT state = 'CA';

## Create temporary tables using schemas

| CREATE TEMP | TABLE | trans | (     |
|-------------|-------|-------|-------|
| customer    | _id   | INT   | EGER, |
| items       |       | INT   | EGER, |
| price       |       | REA   | L     |
| );          |       |       |       |

Add to the table: INSERT INTO trans VALUES (27, 5, 12.00), (33, 25, 11.00);

```
CREATE TEMP TABLE custs (
              INTEGER PRIMARY KEY,
   id
             TEXT NOT NULL,
   customer
   state
              TEXT
);
```

Or by saving a query

CREATE TEMP TABLE big AS SELECT \* FROM transactions WHERE items > 100;

Replace TEMP TABLE with TEMP VIEW to get a liveupdated VIEW.

### GROUP BY aggregates

SELECT state, COUNT(\*) AS number FROM customers GROUP BY state;

Many options for aggregation: SUM, COUNT, AVG, etc.

Everything in the SELECT must be either in the GROUP BY or in an aggregation.

HAVING is for conditioning after aggregation.

SELECT state, COUNT(\*) AS number FROM customers GROUP BY state HAVING COUNT(\*) > 1;

#### **JOIN combines tables**

Use ON or WHERE to set matching condition. Use table prefix if ambiguous.

SELECT customer, items, state FROM customers JOIN transactions ON customer\_id = id;

SELECT customer, items, state FROM customers, transactions WHERE customer\_id = customers.id;

LEFT JOIN includes unmatched values from the first table.

SELECT customer, items, state FROM customers LEFT JOIN transactions ON customer\_id = customers.id;

RIGHT JOIN does the same for the second table.

SELECT customer, items, state FROM customers RIGHT JOIN transactions ON customer id = id;

FULL JOIN includes all unmatched rows.

SELECT customer, items, state FROM customers FULL JOIN transactions ON customer\_id = customers.id;

# Subqueries allow more complex operations

SELECT customer, total FROM customers JOIN (SELECT customer id, SUM(items\*price) AS total FROM transactions GROUP BY customer\_id) AS orders ON customer id = id;

- 2 -