
Example data frame

State Capital Population

a Texas Austin 28700000

b New York Albany 19540000

c Washington Olympia 7536000

Pandas Reference Sheet
POWERED BY THE SCIENTISTS AT THE DATA INCUBATOR

Selecting and filtering

SELECTING COLUMNS

df[‘State’]—selects ‘State’ column

df[[‘State’, ‘Population’]]—selects ‘State’ and 
‘Population’ column 

SELECTING BY LABEL

df.loc[‘a’]—selects row by index label

df.loc[‘a’, ‘State’]—selects single value of row ‘a’ and 
column ‘State’

SELECTING BY POSITION

df.iloc[0]—selects rows in position 0

df.iloc[0, 0]—selects single value by position at row 0 and 
column 0

FILTERING

df[df[‘Population’] > 20000000]]—filter out rows not 
meeting the condition

df.query(“Population > 20000000”)—filter out rows 
not meeting the condition

Data cleaning and modifications
df[‘State’].isnull()—returns True/False for rows with 

missing values

df.dropna(axis=0)—drop rows containing missing values

df.dropna(axis=1)—drop columns containing missing 
values

df.fillna(0)—fill in missing values, here filled with 0

df.sort_values(‘Population’, ascending=True) 
—sort rows by a column’s values

df.set_index(‘State’)—changes index to a specified 
column

df.reset_index()—makes the current index a column

df.rename(columns={‘Population’=’Pop.’}) 
—renames columns

Loading/exporting a data set
path_to_file: string indicating the path to the file,  
e.g., ‘data/results.csv’

df = pd.read_csv(path_to_file)—read a CSV file

df = pd.read_excel(path_to_file)—read an Excel file 

df = pd.read_html(path_to_file)—parses HTML to find 
all tables

df.to_csv(path_to_file)—creates CSV of the data frame

Examining the data
df.head(n)—returns first n rows 

df.tail(n)—returns last n rows

df.describe()—returns summary statistics for each 
numerical column

df[‘State’].unique()—returns unique values for the 
column

df.columns—returns column names

df.shape—returns the number of rows and columns

Statistical operations
can be applied to both data frames and series/column

df[‘Population’].sum()—sum of all values of a column

df.sum()—sum for all numerical columns

df.mean()—mean

df.std()—standard deviation

df.min()— minimum value

df.count()—count of values, excludes missing values

df.max()—maximum value

df[‘Population’].apply(func)—apply func to each 
value of column



col1 col2 col3
col1 col2 col3

col1 col2 col3

col1 col2 col3
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State Capital Population

a Texas Austin 28700000

b New York Albany 19540000

c Washington Olympia 7536000

Data frame df1

State Highest Point

x Washington Mount Rainier

y New York Mount Marcy

z Nebraska Panorama Point

Data frame df2

State Capital Population Highest Point

0 New York Albany 19540000 Mount Marcy

1 Washington Olympia 7536000 Mount Rainier

2 Nebraska NaN NaN Panorama Point

how=‘right’

State Capital Population Highest Point

0 New York Albany 19540000 Mount Marcy

1 Washington Olympia 7536000 Mount Rainier

how=‘inner’

State Capital Population Highest Point

0 Texas Austin 28700000 NaN

1 New York Albany 19540000 Mount Marcy

2 Washington Olympia 7536000 Mount Rainier

3 Nebraska NaN NaN Panorama Point

how=‘outer’

State Capital Population Highest Point

0 Texas Austin 28700000 NaN

1 New York Albany 19540000 Mount Marcy

2 Washington Olympia 7536000 Mount Rainier

how=‘left’

+

Grouping and aggregation
grouped = df.groupby(by=’col1’)—create grouped by object

grouped[‘col2’].mean()—mean value of ‘col2’ for each group

grouped.agg({‘col2’: np.mean, ‘col3’: [np.mean, np.std]})—apply different functions to different columns

grouped.apply(func)—apply func to each group 

Merging data frames
There are several ways to merge two data frames, depending on the value of method. The resulting indices are integers starting with zero.

df1.merge(df2, how=method, on=’State’) 



The data
Your data needs to be contained in a two-dimensional feature matrix and, in  the case of 
supervised learning, a one-dimensional label vector. The data has to be numeric (NumPy 
array, SciPy sparse matrix, pandas DataFrame).

Splitting into training data and test data
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test  = train_test_split(X, y)

Transformers: preprocessing the data

EXAMPLE

ex_transf = ExampleTransformer()—creates a new instance

ex_transf.fit(X_train)—fits transformer on training data

transf_X = ex_transf.transform(X_train)—transforms training data

transf_X_test = ex_transf.transform(X_test)—transforms test data

STANDARDIZE FEATURES (ZERO MEAN, UNIT VARIANCE)

from sklearn.preprocessing import StandardScaler 
scaler = StandardScaler()

SCALE EACH FEATURE BY ITS MAX ABS VALUE

from sklearn.preprocessing import MaxAbsScaler 
max_scaler = MaxAbsScaler()

GENERATE POLYNOMIAL FEATURES

from sklearn.preprocessing import PolynomialFeatures 
poly_transform = PolynomialFeatures(degree=n)

ONE-HOT ENCODE CATEGORICAL FEATURES

from sklearn.preprocessing import OneHotEncoder 
ohe = OneHotEncoder()

PRINCIPAL COMPONENT ANALYSIS

from sklearn.decomposition import PCA 
pca = PCA(n_components=n)

Predictors: supervised learning

EXAMPLE

ex_predictor = ExamplePredictor()—creates a new instance

ex_predictor.fit(X_train, y_train)—fits model on training data

y_pred = ex_predictor.predict(X_train)—predicts on training data

y_pred_probs = ex_predictor.predict_proba(X_train)—classifiers 
only, predicts class probabilities on training data

LINEAR REGRESSION

from sklearn.linear_model import LinearRegression
lr = LinearRegression()

DECISION TREE REGRESSION MODEL

from sklearn.tree import DecisionTreeRegressor
tree = DecisionTreeRegressor(max_depth=n)

RANDOM FOREST REGRESSION MODEL

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()

LOGISTIC REGRESSION

from sklearn.linear_model import LogisticRegression
logr = LogisticRegression()

RANDOM FOREST CLASSIFICATION MODEL

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()

Reference Sheet



Predictors: unsupervised learning

EXAMPLE

ex_predictor = ExamplePredictor()—creates a new instance

ex_predictor.fit(X_train)—fits model on training data

y_pred = ex_predictor.predict(X_train)—predicts on training data

K-MEANS CLUSTERING

from sklearn.cluster import KMeans 
km = KMeans(n_clusters=n)

Evaluating model performance
from sklearn import metrics

REGRESSION METRICS

metrics.mean_absolute_error(y_true, y_pred)—Mean absolute error

metrics.mean_squared_error(y_true, y_pred)—Mean squared error

metrics.r2_score(y_true, y_pred)—R2 score

CLASSIFICATION METRICS

metrics.accuracy_score(y_true, y_pred)—Accuracy score

metrics.precision_score(y_true, y_pred)—Precision score

metrics.recall_score(y_true, y_pred)—Recall score

metrics.classification_report(y_true, y_pred)—Classification report

metrics.roc_auc_score(y_true, y_pred_probs)—ROC AUC score

metrics.log_loss(y_true, y_pred_probs)—Cross-entropy loss

CLUSTERING METRICS

metrics.silhouette_score(X_train, y_pred)—Silhouette score

CROSS-VALIDATION

from sklearn.model_selection import cross_val_score 
cross_val_score(lr, X_train, y_train, cv=5)

Transforming only some features/columns
EXAMPLE

from sklearn.compose import ColumnTransformer
example_transf = ColumnTransformer(  

[(transformer_name, transformer, columns_to_transform)])
example_transf.fit(X_train)
X_transf = example_transf.transform(X_train)

Optimizing hyperparameters
from sklearn.grid_search import GridSearchCV
grid = GridSearchCV(estimator=DecisionTreeRegressor(),  

param_grid={‘max_depth’: range(3, 10)})
grid.fit(X_train, y_train)
print(grid.best_estimator_)—estimator that was chosen by the search

print(grid.best_params_)—parameters that gave the best results

Pipeline
EXAMPLE

from sklearn.pipeline import Pipeline
pipe = Pipeline([(‘feature scaling’, StandardScaler()), 

  (‘linear regression’, LinearRegression())])
pipe.fit(X_train, y_train)—fits model on training data

y_pred = pipe.predict(X_train)—predicts on training data

y_pred_test = pipe.predict(X_test)—predicts on test data

scaler = pipe.named_steps[‘feature scaling’]
lr = pipe.named_steps[‘linear regression’]

Feature union
EXAMPLE

from sklearn.pipeline import FeatureUnion
union = FeatureUnion([(‘transf_1’, ExampleTransformer1()), 

 (‘transf_2’, ExampleTransformer2())])
union.fit(X_train)—fits on training data

X_transf = union.transform(X_train)—transforms training data
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Python Syntax REFERENCE SHEET
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SYNTAX  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

Creating variables

Variables can be created by: 
deg_C = 10.5 # This is a variable

A variable name can consist of letters, numbers and the 
underscore character (_) but the variable name may not 
start with a number . Comments are created with a # and 
are ignored by the Python interpreter .

Common mathematical operations

2 + 3 - addition
1 - 4 - subtraction
2 * 3 - multiplication
4 / 3 - division
4 // 3 - floor division (round down) 
2 ** 3 - raise to the power
a += 1 - compute a + 1 and assign the result to a
a  -=  1 -  compute a - 1 and assign the result to a

Common built-in functions

print(temp_data) - print/display the value of temp_
data

len(temp_data) - returns the number of values of the 
iterable

sum(temp_data) - returns sum of the values of the 
iterable 

min(temp_data) - returns the minimum value of the 
iterable

max(temp_data) - returns the maximum value of the 
iterable

sorted(temp_data) - returns a list of the sorted 
values of temp_data

range(start, end, step) - returns an iterable from 
start to end (exclusive) using a step size of step 
(defaults to 1)

Functions

Functions are a great way to group related lines of code 
into a single unit that can be called upon. Here, we define 
a function with two positional arguments a and b and one 
keyword argument multiplier with a default value of 
1 .

def subtract(a, b, multiplier=1):
 

“”” 
Subtract two numbers and scale the result. 
””” 
diff = multiplier * (a - b) 
 
return diff

 
Now, we call the function . 
In  [1]:  subtract(1, 2, multiplier=2) 
Out [1]:  -2

Boolean logic

These operations will return either True or 
False,depending on the value of the two variables . They 
are often used in conjunction with if/elif statements .

a < b - is a less than b
a > b - is a greater than b
a <= b - is a less than or equal to to b
a >= b - is a greater than or equal to b
a == b - do a and b have the same value
a != b - do a and b not have the same value
a is b - is a the same object as b
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Loops

Loops are a way to repeatedly execute a block of code . 
There are two types of loops: for and while loops . For 
loops are used to loop through every value of an iterable, 
like a list or tuple . While loops are used to continually 
execute a block of code while a provided condition is still 
true .

for temp in temp_data: 
 print(temp)

count = 0 
while count < 10: 
 print(count) 
 count += 1

if/elif/else blocks

if/elif/else blocks let us control the behavior of 
our program based on conditions . For example, what 
value to assign to a variable based on the value of 
another variable . At a minimum, you need one condition 
to test, using if . Multiple conditions can be tested 
using multiple elif statements . The code in the else 
block, which is optional, is run when none of the tested 
conditions are met .

if amount < 5: 
 rate = 0.1 
elif amount <= 5 and amount < 10: 
 rate = 0.2 
else: 
 rate = 0.25

DATA STRUCTURES   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

Strings

Strings are a sequence of characters and are great when 
wanting to represent text . They’re created using either 
single or double quotes . They can be indexed but strings 
are immutable . Strings are iterables, iterating over each 
of the characters .

sentence = ‘The quick brown fox jumped over 
the lazy dog.’

Common operations with strings and usage:

sentence.lower() - returns new string with all 
characters in lowercase

sentence.upper() - returns a new string with all 
characters in uppercase

sentence.startswith(‘The’) - returns True or 
False if string starts with ‘The’

sentence.endswith(‘?’) - returns True or False if 
string ends with ‘?’

sentence.split() - returns a list resulting from 
splitting the string by a provided separator, defaults 
to splitting by whitespace if no argument is passed .

sentence.strip() - returns a new string with leading 
and trailing whitespace removed

‘fox’ in sentence - returns True if ‘fox’ is present 
in sentence .

‘taco ‘ + ‘cat’ - returns a new string from 
concatenating the two strings

f”My name is {name} and I’m {age} years 
old.” - returns a string with the values of variables 
name and age substituted into {name} and {age}, 
respectively .

sentence.replace(“brown”, “red”) - replace 
every occurrence of “brown” with “red”

len(sentence) - returns the number of characters of 
the string

Lists

Lists are an ordered collection of Python objects . The 
items of the lists do not have to be the same data type . 
For example, you can store strings and integers inside 
the same list . Lists are mutable; they can be altered after 
their creation . Since they are ordered, they can be indexed 
by position. Note, Python uses zero indexing so the “first” 
element is index by 0 . Lists are created using square 
brackets [] .

temp_data = [10.5, 12.2, 5, 8.7, 1]

Common operations on lists and example usage:

temp_data.append(2.5) - adds 2 .5 to the end of the 
list

temp_data.sort() - sorts the elements of the list in 
ascending order . Use reverse=True

to sort by descending order .
temp_data.remove(12.2) - removes the first 

occurrence of 12 .2 from the list
temp_data.pop() - remove and returns the last 

element of the list
temp_data[0] - access value at position 0
temp_data[:3] - access the first three values, positions 

0 to 3 (inclusive-exclusive)
temp_data[-1] - access the the last element
temp_data[1:4:2] - access values from position 1 

(inclusive) and 4 (exclusive) with a step size of 2
len(temp_data) - returns the number of values in the 

list
sum(temp_data) - returns sum of the values of the list
min(temp_data) - returns the minimum value of the list
max(temp_data) - returns the maximum value of the 

list
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Tuples

Tuples are similar to lists but they are immutable; they 
cannot be modified. As with lists, they can be indexed in a 
similar fashion . Tuples are created by using parentheses 
() .

array_shape = (100, 20)

Sets

Sets are a collection of unique values . They’re a great 
data structure to use when wanting to keep track of 
only unique values . The members of a set need to be 
immutable . For example, lists are not allowed but tuples 
are . A set can be created by passing an iterable to  set or 
directly using curly braces .

even_numbers = set([x for x in range(100) 
if x % 2 == 0])

squares = { 1, 1, 2, 4, 2, 9, 16, 25, 36, 
49, 64, 81, 100} 

even_numbers.add(100) - add 100 to the set even_
numbers

even_numbers.difference(squares) - returns a 
set that is the difference between even_numbers 
and squares

even_numbers.union({1, 3, 5, 7, 9}) -  return a 
set that is the union of the two sets

squares.intersection(even_numbers) - return set 
of common elements 

1 in even_numbers - returns True or False if 1 is a 
member of the set even_numbers

Dictionary

Dictionaries store data in key-value pairs . Values can 
be indexed using the key associated with the value . 
There’s no restriction in what can be values but keys 
are restricted to immutable types . For example, strings, 
numerics and tuples can be keys . Dictionaries are 
created using curly braces {} with the key and value pair 
separated by a colon : . Iterating over a dictionary yields 
the keys .

customer_data = {
  ‘name’: ‘Clarissa’,
  ‘account_id’: 100045,
  ‘account_balance’: 4515.76,
  ‘open_account’: True
}

customer_data[‘name’] - access value associated 
with ‘name’

customer_data[‘telephone’] = None - create new 
key-value pair ‘telephone’: None

customer_data[‘telephone’] = ‘555-1234’ - 
update value of key ‘telephone’

del customer_data[‘telephone’]  - delete key-
value for ‘telephone’

‘age’ in customer_data - returns True/False if key 
‘age’ is in the dictionary

customer_data.get(‘age’, -1) - returns the value 
of key ‘age’ if it exists, returns None otherwise . 
Optional second argument is returned instead of 
None if key does not exist .

customer_data.keys() - returns an iterable over all 
keys

customer_data.items() - returns an iterable over all 
key-value pairs

customer_data.values() - returns an iterable over 
all values

*     *     *
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Query structure

SELECT <expressions>
FROM <tables>
WHERE <conditions>
GROUP BY <columns>
HAVING <conditions>
ORDER BY <columns>
LIMIT <number>

Only SELECT and FROM are mandatory

LIMIT restricts the number of rows returned

SELECT chooses what to get

SELECT customer_id, items*price AS total 
FROM transactions;

can select columns or expressions, such as product, 
ratios, etc. 

Rename cols or expressions with AS

Get number of rows in table customers: 
SELECT COUNT(*) FROM customers;

Get distinct elements in column state: 
SELECT DISTINCT state FROM customers;

Number of distinct elements: 
SELECT COUNT(DISTINCT state) 
FROM customers;

CASE allows if-like behavior

SELECT customer_id,  
CASE WHEN items < 10 THEN ‘few’ 
WHEN items > 10 AND items < 100  
THEN ‘many’ 
ELSE ‘lots’;

Sample tables

transactions

customer_id items price
27 5 12.00
33 25 11.00
60 150 9.00
60 250 9.00

customers

id customer state
44 Amy CA
60 Brian CA
27 Pat NY
51 Alex NULL

WHERE filters results

SELECT * 
FROM customers 
WHERE state = ‘CA’;

Select from a list: 
WHERE customer IN (‘Amy’, ‘Pat’);

A pattern, % can be filled in with anything: 
WHERE customer LIKE ‘A%’;

Find missing values: 
WHERE state IS NULL;

Combine filters:
WHERE customer_id < 50 

AND state = ‘CA’;

WHERE name = ‘Amy’ 
OR NOT state = ‘CA’;
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Create temporary tables using schemas

CREATE TEMP TABLE trans (
 customer_id INTEGER,
 items  INTEGER,
 price  REAL
);

Add to the table: 
INSERT INTO trans VALUES (27, 5, 12.00), 
(33, 25, 11.00);

CREATE TEMP TABLE custs (
 id  INTEGER PRIMARY KEY,
 customer TEXT NOT NULL,
 state TEXT
);

Or by saving a query

CREATE TEMP TABLE big AS 
SELECT * FROM transactions 
WHERE items > 100;

Replace TEMP TABLE with TEMP VIEW to get a live-
updated VIEW.

GROUP BY aggregates

SELECT state, COUNT(*) AS number 
FROM customers 
GROUP BY state;

Many options for aggregation: SUM, COUNT, AVG, etc.

Everything in the SELECT must be either in the GROUP 
BY or in an aggregation.

HAVING is for conditioning after aggregation.

SELECT state, COUNT(*) AS number 
FROM customers 
GROUP BY state 
HAVING COUNT(*) > 1;

JOIN combines tables

Use ON or WHERE to set matching condition. Use table 
prefix if ambiguous.

SELECT customer, items, state 
FROM customers JOIN transactions 
ON customer_id = id;

SELECT customer, items, state 
FROM customers, transactions 
WHERE customer_id = customers.id;

LEFT JOIN includes unmatched values from the first 
table.

SELECT customer, items, state 
FROM customers LEFT JOIN transactions 
ON customer_id = customers.id;

RIGHT JOIN does the same for the second table.

SELECT customer, items, state 
FROM customers RIGHT JOIN transactions 
ON customer_id = id;

FULL JOIN includes all unmatched rows.

SELECT customer, items, state 
FROM customers FULL JOIN transactions 
ON customer_id = customers.id;

Subqueries allow more complex 
operations

SELECT customer, total
FROM customers JOIN 

(SELECT customer_id, 
SUM(items*price) AS total 
FROM transactions 
GROUP BY customer_id) AS orders

ON customer_id = id;
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